Weights Derived from Hyperspectral Data to Facilitate an Optimal Field Sampling Scheme for Potential Minerals

نویسندگان

  • P. Debba
  • F. J. A. van Ruitenbeek
  • F. D. van der Meer
  • E. J. M. Carranza
  • A. Stein
چکیده

This paper presents a statistical method for deriving optimal spatial sampling schemes. It focuses on ground verification of minerals derived from hyperspectral data. Spectral angle mapper (SAM) and spectral feature fitting (SFF) classification techniques were applied to obtain rule mineral images. The rule images provide weights that are utilized in simulated annealing. A HyMAP 126channel airborne hyperspectral data acquired in 2003 over the Rodalquilar area in Spain serves as an application to target those pixels with the highest likelihood of occurrence of a specific mineral and as a collection the location of these sampling points selected represent the distribution of that particular mineral. In this area, alunite being a predominant mineral in the alteration zones was chosen as the target mineral. A weight function is defined to intensively sample areas where a high probability and abundance of alunite occurs. This method leads to an efficient distribution of sample points, on the basis of a user-defined objective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling scheme optimization from hyperspectral data

This thesis presents statistical sampling scheme optimization for geo-environmental purposes on the basis of hyperspectral data. It integrates derived products of the hyperspectral remote sensing data into individual sampling schemes. Five different issues are being dealt with. First, the optimized sampling scheme is presented to select samples that represent different ontological categories. T...

متن کامل

Geochemical Sampling Scheme Optimization on Mine Wastes Based on Hyperspectral Data

Spatial sampling optimization is an important issue for both geo-chemists and geo-statisticians. Many spatial sampling optimization methods have been previously developed. In this paper, we present a spatial simulated annealing method is presented using hyperspectral data.This sampling method was applied in a project concerning environment assessment of the Dexing Copper Mine. Mine waste contai...

متن کامل

Field Sampling from a Segmented Image

This paper presents a statistical method for deriving the optimal prospective field sampling scheme on a remote sensing image to represent different categories in the field. The iterated conditional modes algorithm (ICM) is used for segmentation followed by simulated annealing within each category. Derived field sampling points are more intense in heterogenous segments. This method is applied t...

متن کامل

Gravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines

Gravity acceleration data have grand pursuit for marine applications. Due to environmental effects, marine gravity observations always hold a high noise level. In this paper, we propose an approach to produce marine gravity data using satellite altimetry, high-resolution geopotential models and harmonic splines. On the one hand, harmonic spline functions have great capability for local gravity ...

متن کامل

An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data

The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006